
  

  

Abstract—Active continuous control of systems using 
physical sensors are hindered by presence of corrupting noise 
in discretized measurements which degrades performance. This 
paper presents a systematic development of organized sensor 
networks that fuses the dynamic implementation of parallel 
and sequential network architectures with conventional multi-
sensor filtering techniques to improve performance through 
collaborative network enhancement of noise suppression and 
sampling rate. The classical control of an inverted pendulum 
using vision sensors is presented as an illustrative example. 
Simulation results suggest that an organized sensor network 
with dynamic throttling outperforms a static network while 
minimizing overall sensor utilization. 

I. INTRODUCTION 

  Rapid advances in low-cost computing technologies and 
low-power wireless communications within the last ten 
years have spawned a flurry of research and development on 
sensor networks which allows random deployment in 
inaccessible terrains or disaster relief operations. 
Commercial, military and potential sensor network 
applications (that include home, healthcare, military ISR, 
environment protection, water management, and livestock 
and endanger monitoring) can be found in a number of 
survey papers [1][2][3][4]. These developments, along with 
the availability of real-time machine vision systems at low 
cost, have provided the motivation to develop methods to 
remotely position mobile mechatronic devices (for 
applications such as structural health monitoring of large 
structures or compliant handling of natural or live objects 
for food processing).  

In real time applications, physical sensors are used to 
observe and measure the system states for subsequent 
feedback control. A common issue encountered in remote 
control of mobile mechatronic devices is the tradeoff 
between responsiveness and the operating range of the 
sensor that often limits the accuracy of the controlled 
system.  In the case of vision-based control, for example, 
images with higher resolutions are required in order to 
achieve more precise control, thereby increasing the 
computation overheads with additional pixels to be 
processed. In addition, vision sensors often exhibit 
measurement errors which could further degrade the 
controlled system performance.  An effective alternative to 
overcome the above problems is to employ an organized 
 

Manuscript received January 31, 2009. This work was supported in part 
by the Georgia Agricultural Technology Research Program and the U.S. 
Poultry and Eggs Association.  

S. Foong and K.-M. Lee are with the Woodruff School of Mechanical 
Engineering at the Georgia Institute of Technology, Atlanta, GA 30332-
0405 USA (e-mail: shao@gatech.edu; kokmeng.lee@me.gatech.edu). 

sensor network with multi-sensor fusion.  
Measurement errors of physical sensors can be classified 

as systematic and random errors. Unlike the former, random 
errors are stochastic in nature and although they cannot be 
predicted, they can be adequately modeled using stochastic 
models. Since these measurements occur in discrete 
intervals, the Discrete Kalman Filter (DKF) has been 
extensively and effectively used to estimate the true 
measurement from raw observations and prior knowledge of 
system dynamics [5][6][7]. 

To address the inherent latency and improve performance 
in vision based control, different sensor network 
architectures were investigated in [8]. In these studies, it was 
found that by sequentially activating vision sensors in a 
network, the maximum velocity that can be tracked was 
increased. Direct comparison between sequential and 
parallel architectures of sensor networks has been 
investigated in recent decades [6][7], and marginally favors 
sequential processing. However, there is a lack of a unified 
approach to amalgamate these two architectures in a 
complementary fashion. A network of sensors having 
elements of both architectures can improve the sensing 
performance two fold through reduction in overall sampling 
time and suppression of measurement noise.  

Inspired by developments in dynamic sensor networks, 
where an energy efficient sensor network is achieved 
through adaptively adjusting network density and coverage 
quality [9], the performance of the sensor network can be 
adjusted and regulated just like a normal feedback 
controller. Such active management of the network reduces 
overall utilization of the entire sensor network while 
retaining the potential and capabilities of a fully operational 
sensor network.  

As control of the classical inverted pendulum system has 
been successfully achieved through low-cost USB cameras 
[10][11], this will serve as a platform to facilitate the 
investigation and development of an organized sensor 
network that harnesses the elements of parallel and 
sequential architectures with the flexibility of dynamic 
networks in a systematic manner. 

The remainder of this paper is arranged as follows: 
• We systematically characterize and develop an organized 

sensor network that is fundamentally based on the 
temporal measurement model for a sensor. This temporal 
model allows the subsequent derivation of optimal 
weighting scheme between concurrent sensor 
measurements. The throttling controller which actively 
manages the network configuration is introduced as well. 

• To compare and evaluate control performance of various 
sensor configurations and effectiveness of network 
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throttling, simulations of DKF assisted state feedback 
control of an inverted pendulum system in perfect (no 
noise) and practical (with noise) environments are used.  

II. ORGANIZED SENSOR NETWORKS 
Sensors in a network can be organized into s groups with 

each group containing r sensors that competitively and/or 
complementary sample some or all states of an n-order 
system. Graphically, the sensing states of the jth sensor in the 
ith group of the [s, r] network can be represented as shown in 
Fig. 1. As each network sensor has individual 
characteristics, an organized sensor network is implemented 
for active management. 

Fig. 2 illustrates a control system using a network with [s, 
r] sequential and redundant sensors. It consists of a 
throttling controller, a weighting optimizer and a Kalman 
filter (DKF) working in tandem to produce a filtered 
estimate of the system states from noise corrupted individual 
sensor measurements. The throttling controller uses the 
desired controller output, sensor measurements and user 
defined performance specifications to determine the required 
[s, r] sensor configuration, and the optimal weighting 
distribution for each sensor group. Finally, the Kalman filter 
will utilize the weighted sensor measurements and system 
dynamics to generate a filtered estimate of the system states 
for subsequent control.  

A measurement model that characterizes the system state 
measurement by each sensor in the [s, r] network is 
developed in the temporal domain. 
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Fig. 1. Graphical representation of network organization. 
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Fig. 2. Block diagram of an organized sensor network. 

A. Sensor Temporal Measurement Model 

The measurement of the state vector n∈x  by the jth 

sensor of the ith group in the sensor network at time t (with 
sampling period Tij) is given by 

( )
( )1

( ) ( ) ( )                      

( ) [ ] ~ N 0, ( )

i j ij i j ij ij ij

T
i j ij ij ijp ijn ij ij

t kT kT

kT kTσ σ σ

⎧ = + +⎪
⎨

=⎪⎩

z L x ν b

ν Ψ
 

(1a) 
 

(1b) 
where ( 1)ij ijkT t k T≤ < + ; k is the time index integer, 

ijb and n
ij ∈ν are the bias and uncorrelated zero-mean 

Gaussian white measurement noise with covariance 
n n

ij
×∈Ψ ; and the measurement matrix is 

( ) 1diag( )n n
ij ij ijp ijnδ δ δ×∈ =L  (2) 

where 1 if is measurable
0 otherwise

p
ijp

x
δ

⎧
= ⎨

⎩
  

If all states are measurable, Lij is an identity matrix. 
Similarly, if xp is measurable, 

( ) ( )1diag ( ) ( ) ( )ij ij i j ij ijp ij ijn ijkT kT kT kTψ ψ ψ=Ψ  (3) 
where ψijp is the variance associated with σijp. 

B. Weighting coefficients Optimization 
The effective noise variance is minimized through 

constrained optimization. Without the loss of generality, we 
restrict our model to an [s, r] network with homogeneous 
sampling time Tij=Tc as an illustration. In this network, the 
simultaneous sampling of r sensors by the ith group provides 
a sequential weighed measurement iz  at time t 

where ( ) ( 1)i ikT T t k T T+ ≤ < + + :  

( ) ( )
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(4a) 
 

(4b) 

and ( 1)( / )i cT i T s= − . (4c) 
In 4(a) and 4(b), the over-bar “−” indicates that the quantity 
is weighted in the ith sensor group.  In (4a),   

1diag( )i i ip inδ δ δ=L  (5) 

where 1max( )ip i p ijp irpδ δ δ δ= .  Similarly, the weighted 
bias and noise covariance matrix are given by (6) and (7): 

1
  where 

r
n n

i ij ij ij
j

×

=

= ∈∑b α b α  (6) 

1diag( )ij ij ijp ijna a a=α  and 
1

r

ij n
j =

=∑α I  (6a,b) 

1diag( )i i ip inψ ψ ψ=Ψ  where 2

1

r

ip ijp ijp
j

aψ ψ
=

= ∑  (7a,b)

Hence, each sensor group contains r weighting 
coefficients to be selected for each of the n system states. 
One method to uniquely resolve for the r× n coefficients is 
by determining the coefficients that minimizesΨ . For this, 
the first (r−1) noise variance in (7b) is expressed as a 
multiple of the rth variance, which yield 

( )2 2 2
1 1 ( 1) ( 1)ip i p i p i r p i r p irp irpa m a m aψ ψ− −= + + +  (8) 
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where mijp is a known positive gain. Taking partial 
derivatives of (8) with respect to aijp (for j=1…r−1) and 
equating them to zero, (r−1) equations can then be obtained 
for computing the optimal weighting coefficients aijp: 

1

1

1 0
r

jp
ijp ijp ijp

ijp j

m a a
a
ψ −

=

∂
= + − =

∂ ∑  (9) 

Example:  
Table 1 shows the computed optimal weighting 

coefficients where the subscripts (i, p) are omitted for 
readability for a network with 1, 2, 3 and 4 sensor 
redundancy. 

Table 1. ( )1 ra a  for the [s, r] network configuration. 

[s, 1] 1 1a =  

[s, 2] ( ) ( )1
1 2

1

1
1

m
a a

m
=

+
 

[s, 3] ( ) ( )2 1 1 2
1 2 3

1 2 1 2

m m m m
a a a

m m m m
=

+ +
 

[s, 4] ( ) ( )2 3 1 3 1 2 1 2 3
1 2 3 4

1 2 1 3 2 3 1 2 3

m m m m m m m m m
a a a a

m m m m m m m m m
=

+ + +
 

The normalized weighted variance for [s ,2] and [s ,3], 
which are computed using (7b) with unit covariance of 
the rth variance and the coefficients in Table 1, are plotted 
as a function of the gains m1 and m2 in Fig. 3(a) and 3(b). 
From both plots, the curve and surface approach unity 
asymptotically as m1 and m2 increase. Hence the inclusion 
of measurement from an additional sensor (no matter how 
noisy) will reduce the effective variance.  It is noted that 
this weighting optimization is not restricted to the 
classical Gaussian noise distribution discussed here. 
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Fig. 3. Normalized effective variance for [s, 2] and [s, 3]. 

C. Discrete Kalman Filtering 
As an illustration, we consider here a plant in continuous-

time state-space representation with a controllable input u:  
( ) ( ) ( )
( ) ( ) ( )
t t t
t t t

⎧
⎨
⎩

x = Ax + Bu
y = Cx + Du

  
 

(10) 

The corresponding discrete-time representation with process 
noise ω of covariance Ω is given by  

(( 1) ) ( ) ( ) ( )
( ) ( ) ( )       

k T kT kT kT
kT kT kT

+ +⎧
⎨
⎩

x = Fx + Gu ω
y = Cx + Du

  
 

(11) 

where ( ) TT e= AF ;
0

( )
T

T e dλ λ= ∫ AG B  and T=Tc/s. Without 

the loss of generality, the control law of the linear system 
using full state feedback (FSF) is 

( )ˆ( ( 1) ) FkT t k T kT≤ < + = −u K x  (12) 

where KF is the feedback matrix; and ˆ ( )kTx is the estimate 
of x at t=kT. The discrete Kalman filter [12] adapted for an 
[s, r] sensor-networked FSF system can be summarized by 

11 1( ) ( ) ( ) ( ) ( )kT kT kT kT kT
−− −⎡ ⎤= +⎣ ⎦K P I Ψ P Ψ  (13)

( )
ˆ ˆ ˆ(( 1) ) ( ) ( )

ˆ( ) ( ) ( )
Fk T kT kT

kT kT kT
+ = −

+ −

x Fx GK x
FK z x

 
(14)

11(( 1) ) ( ) ( ) ( ) ( )Tk T kT kT kT kT
−−⎡ ⎤+ = + +⎣ ⎦P FP I Ψ P F Ω (15)

where K and P are the gain and estimate error covariance of 
the Kalman filter. 

D. Throttling Controller 
In an [s, r] network, a controller is required to select the 

desired sensor configuration out of a myriad of possible 
sensor configurations. For example, a three-sensor network 
contains five possible sensor configurations as illustrated in 
Fig. 4, where each arrow in the acquisition timing diagram 
represents the measurement input from a solitary sensor.  

A direct method that expresses the scalar integer 
quantities of r and s at a future time t=(k+1)T as functions of 
all observable and measurable variables and parameters at 
the current time t=kT can be expressed by: 

( )ˆ(( 1) ) ( ), ( ), ( )r k T f kT c kT kT+ = x u  (16a) 

( )ˆ(( 1) ) ( ), ( ), ( )s k T g kT c kT kT+ = x u  (16b) 
where c is the desired command of the system.  

 
Fig. 4. Acquisition schedule of different sensor configurations. 

III. SIMULATION RESULTS AND DISCUSSIONS 
We investigate the effects of utilizing sensor networks on 

the controlled system performance under the influences of 
process and measurement noise. For numerical validation 
and performance evaluation, the inherently unstable inverted 
pendulum system (Fig. 5 along with the parameter values in 
Table 2) where analytical solutions are available for 
validation, is chosen in this study.  The system is under FSF 
control with optical cameras which has the advantage of 
measuring all state variables individually and 
simultaneously.   

Table 2. Simulation parameters of inverted pendulum. 

System Parameters lp=0.5m; mp=0.2kg; mc=0.5kg; g=9.81ms−2

Process Noise Ω = diag(0.015,0.002,0.15,0.15) 
FSF Gains KF = [-26.9  -97.0  -23.9  -24.7] 
Sensor Parameters Tc = 0.1s; Lij = I,, bij = 0 
Measurement Noise Ψij = diag(0.152,0.12,0.12,0.12) 
DKF IC P(0) = Σ, ˆ (0) 0=x  
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Fig. 5. Schematic of inverted pendulum. 

The linearized equation of the pendulum motion is given 
by (17) where

T
x xθ θ⎡ ⎤= ⎣ ⎦x : 

22 22 1

21 22 2

( ) ( ) ( )t t t
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

0 I B
x = x + u

A 0 B
  

 
(17) 

where 
21

0 31
0 3( )

p p

p cp

m gl

m m gMl

−⎡ ⎤
= ⎢ ⎥

+⎢ ⎥⎣ ⎦
A ; 2

41
3
p

p

l
Ml

⎡ ⎤
= ⎢ ⎥

−⎣ ⎦
B ; 

022 and I22 are the 2×2 null and identity matrixes 
respectively; [ ]T

1 0 0=B and ( )4p cM m m= + .  

The FSF gains are computed to place the desired closed-
loop poles at −10, −8, −3 and −3. Modeled after an industrial 
network vision system [13], the optical camera, capable of 
sampling all four state variables at 10 frames per second 
(fps), has a sampling time Tij=Tc=0.1s. To ensure 
asymptotic stability under FSF, the maximum sampling time 
of the discretized system is Tcrit (or 0.0858 seconds for FSF 
gains in Table 2). The [s>1,r] ([1,r] would result in an 
unstable system) sensor network will possess an effective 
sampling rate of T=Tc/s.  

Two performance criteria, command error (CE) and 
filtered measurement error (FE) are defined for the cart 
displacement over N measurements in (18a) and (18b): 

( )2

0
CE ( ) ( )

NT
c t x t dt= −∫ ;  (18a) 

( )
1 ( 1) 2

0

ˆFE ( ) ( )
N k T

kT
k

x kT x t dt
− +

=

= −∑∫  (18b) 

where c is the desired cart command.  Since, in presence of 
noise, the time responses (and consequently the FE and CE) 
vary from simulation to simulation, the convergence of the 
mean and standard deviation (SD) of FE and CE as a 
function of number of simulation runs are statistically 
studied. From Fig. 6, it can be seen that at least 200 runs are 
required for sufficient convergence of FE and CE. 

A. Effects of Network Configurations 
 The following cases were simulated: 
[s>1, 1]: in the noise-free environment and zero sensor bias: 

This is equivalent to investigating the effect of the 
different sampling period Tc/s on the system. The 
special case [∞, 1] is analogous to a continuous-time 
system (T→0 as s→∞) which serves as a basis for 
comparison. The transient and steady-state results 
(compared against [∞, 1]) are plotted in Fig. 7, 
where only the first 0.5 second of the unit step 
response is shown in Fig. 7(a) to magnify the 
differences during transient.  

[2,1]: The interest here is to investigate the effect of sensor 
network on the stable system (with zero mean 
Gaussian white process and measurement noise as 
specified in Table 2) by comparing with/without Filter 
for the same sampling period of T=Tc/s:  

• No measurement noise:  ( ) ( )Ft kTu = -K x  
• No filter:        ( ) ( )Ft kTu = -K z  
• With DKF:      ˆ( ) ( )Ft kTu = -K x  

 Table 3 compares the effects of using the DKF on CE 
and FE. Snapshot comparisons of the time responses 
are given in Fig. 8(a).  

 
[s, r]: To provide insights into trade-offs between sensor 

redundancy and effective sampling time for a total 
number of sensors, additional sensor network 
configurations are compared statistically. Fig. 8(b) and 
(c) shows the effect on the time responses of the cart 
due to alterations in r and s independently. With [2,2] 
as a basis for comparison, the data are  tabulated in 
Table 4 along with a surface plot relating CE/FE to the 
number of sensors in redundancy and sequential 
configuration in Fig. 9.  

For each case, 500 simulation runs were executed and in 
each independent simulation, the same Gaussian noise is 
applied to all cases (type of filtering in Table 3 and 
configuration in Table 4) being studied.  
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Fig. 6. Convergence rate of FE and CE. 
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Table 3:  Effects of DKF on CE/ FE (Mean, SD) in [2,1] network. 
Response Unit step (cm2sec) Steady- state (cm2sec) 
500 runs CE FE CE FE 
No noise   7301, 499.3   43.30, 31.22 
No filter 7549, 973.2 666.2, 116.0 345.1, 175. 660.3,116.4

DKF 7475, 1091 323.1, 79.04 308.9, 182. 254.3, 58.10
 
Table 4: Effects of configuration on CE/FE (Mean, SD) with DKF. 
Response Unit step (cm2sec) Steady- state (cm2sec) 
500 runs CE FE CE FE 

[2,2] 710.3, 33.57 7.276, 1.141 34.53, 22.76 70.7, 10.59
[4,2] 721.1, 27.15 7.049, 0.781 18.84, 11.17 70.42, 7.64
[8,2] 726.8, 23.19 7.008, 0.552 11.18,   6.69 70.09, 5.32
[2,4] 710.8, 21.63 2.400, 0.349 12.00,   7.91 22.29, 3.13
[2,8] 710.4, 17.97 0.841, 0.113 6.23,   4.17 6.66, 0.90 

The observations from the results are briefly summarized:  
• Fig. 7 shows that in a noise-free environment, the tracking 

error is reduced by 2 orders when the number of sensor 
groups is doubled (or increasing from [21,1] to [22,1], and 
to [23,1]).  

• Table 3 suggests that in an environment corrupted by 
Gaussian white noise, the filter lowers the CE and FE for 
both the unit step and steady-state response. In fact, the 
FE is halved when the DKF was used. 

• As Table 4 suggests, for the steady-state case, the CE 
decreases with increasing sensor usage. While increasing 
the number of sensor groups from 2 to 8 (s) reduces the 

CE by almost 60%, performing the identical change to the 
sensors in each group (r) is more effective and results in a 
reduction of almost 80%. However, the CE for the unit 
step responses are unchanged with increasing redundancy 
and in fact higher at networks with higher s. 

• The trend in the FE is similar to that of the CE. For both 
the unit step and steady-state cases, increasing the 
redundancy of the sensor network is more effective than 
increasing the network sampling rate in reducing the FE. 
Increasing the network redundancy from 2 to 8, reduces 
the FE reduced by 88% and 91% in the unit step and 
steady state case respectively. However, increasing the 
network sampling rate by the same factor could only 
muster an improvement in FE that is less than 5%. 

• As depicted in Fig. 9, increasing the number of sensors in 
redundancy reduces the error in all cases except for the 
CE in the unit step case. On the other hand, the FE and CE 
for the unit step case is unaffected by the number of 
sensors in sequential mode. Increasing the number of 
sequential sensors is most effective in reducing the CE of 
the steady-state case.  

 
FE of unit step response FE of steady-state response 

 
CE of unit step response CE of steady-state response 

Fig. 9. Effects of r and s on CE and FE. 

B. Throttling Controller Implementation 
From the results of the previous section, it can be seen that 

configurations with higher number of sensors in redundancy 
improve steady state tracking of the system. This is largely 
due to the presence of the DKF and accurate knowledge of 
the controlling input into the inverted pendulum system 
which allows accurate prediction of the state during transient 
motion. Assuming the following minimum and maximum 
configurations are available: [2,1] and [2,5], a throttling 
sensor configuration controller that employs variable 
configurations using feedback from the DKF state estimate 
and desired command (16a) is described as follows,  

1 if ( )
(( 1) )

5 otherwise
V kT q

r k T
≥⎧

+ = ⎨
⎩

 (19) 
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where ˆ ˆ( ) ( ) ( ) / ( ) (0)V kT c kT x kT c kT x= − −  and q is the 
threshold transition between the network configurations. 
This threshold determines the specific crossover point where 
the network switches between the maximum and minimum 
configurations. As performance of the overall organized 
sensor network is sensitive to the value of q, and reusing the 
CE and FE as a means to critique performance, 500 
simulations of a delayed step input of the system with the 
throttling controller utilizing different values of q are 
compiled in Table 5. The case where q=0.1 is omitted 
because at steady state the natural variation of ˆ( )x kT caused 
by the noise in the system will inadvertently trigger the 
transient mode of the network. From the table, while 
employing the maximum configuration at all times, q=1, 
results in the lowest FE, it did not produce the lowest CE. 
Decreasing the value of q from 1 ([2,5]) towards 0 ([2,1]) 
results in increasing FE and decreasing sensor network 
utilization. The corresponding trend in CE is however 
nonlinear and a minimum occurs between the two extreme 
values of q. The throttling networks that resulted in the 
lowest CE are: q=0.3, 0.4, 0.5 and 0.6. The best performing 
throttling network occurs at q=0.5; and it outperformed [2,5] 
in CE and maintained an average sensor utilization of 88.3% 
when compared to [2,5]. 

Table 5: Effects of q on CE/FE (Mean, SD) in throttling network. 
500 runs q CE (cm2sec) FE (cm2sec) Utilization (%)

[2,1] 0 777.5, 103.2 48.55, 9.618 20.0 
0.2 719.4, 54.82 18.69, 4.468 82.4, 3.55 
0.3 718.9, 54.67 17.57, 3.940 85.3, 2.19 
0.4 718.8, 54.59 16.87, 3.603 87.1, 1.67 
0.5 718.6, 54.58 16.29, 3.320 88.3, 1.41 
0.6 718.7, 54.87 15.80, 3.098 89.7, 1.23 
0.7 719.2, 55.03 15.33, 2.893 90.8, 1.08 
0.8 720.0, 55.13 14.89, 2.689 91.8, 1.01 

Throttling 

0.9 721.4, 54.88 14.46, 2.488 92.8, 0.97 
[2,5] 1 730.8, 53.22 11.79, 1.360 100 

The resulting response of the cart under a delayed unit 
step response using the throttling sensor controller (q=0.5) is 
shown in Fig. 10. The corresponding responses of the cart 
using the static configurations [2,1] and [2,5] are added for 
comparison. It can be seen that the throttling controller has 
the characteristics of both extreme configurations: The 
transient performance of cart under throttling controller is 
similar to that of [2,1] and the steady state performance is 
similar to that of [2,5].  

IV. CONCLUSIONS 
Using the inverted pendulum as a system platform, the 

feasibility of an organized sensor network to improve 
command tracking under feedback control was investigated. 
In simulations, it was found that while the system controlled 
by a DKF state feedback benefitted from additional sensors 
in the steady state case, the effect on the transient response 
of the system due to a unit step was statistically 
undetectable. Using this result, a throttling sensor network 
that uses least sensors in transient response and full 

complement of sensors at steady state was simulated. It was 
found that the transition between configurations affects the 
performance of the system and the system under throttling 
sensor network out performed the same system with static 
network while maintaining lower sensor utilization.  
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Fig. 10. Cart response and utilization under throttling network. 
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